A Modern Approach to an Ancient Quantity

Michael R. Pilla Mathfest, August 8, 2025

Florida Polytechnic University

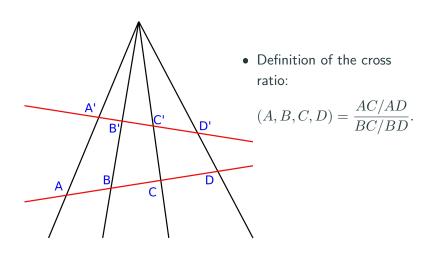
What is Geometry?

Figure 1: La Escuela de Atenas de Raphael; Un ejemplo de geometría en perspectiva.

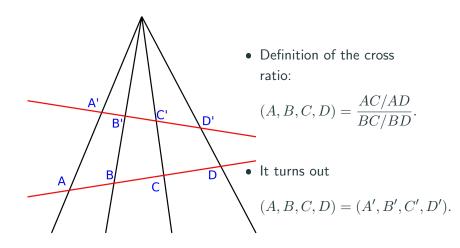
Invariants of Groups of Transformations

Invariants of Groups of Transformations

A Ratio of Ratios



A Ratio of Ratios



The Classical Cross Ratio

Definition

Given four finite distinct points $A=z_1$, $B=z_2$, $C=z_3$, and $D=z_4$ in the complex plane, the cross ratio is defined as

$$(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = \frac{AC/AD}{BC/BD}.$$

The Classical Cross Ratio

Definition

Given four finite distinct points $A=z_1$, $B=z_2$, $C=z_3$, and $D=z_4$ in the complex plane, the cross ratio is defined as

$$(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = \frac{AC/AD}{BC/BD}.$$

What happens if one of the points is 'the point at infinity'?

The Classical Cross Ratio

Definition

Given four finite distinct points $A=z_1$, $B=z_2$, $C=z_3$, and $D=z_4$ in the complex plane, the cross ratio is defined as

$$(z_1, z_2, z_3, z_4) = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = \frac{AC/AD}{BC/BD}.$$

What happens if one of the points is 'the point at infinity'?

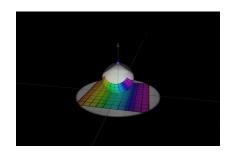
What happens if we permit, say, $z_1 = z$ to be a variable?

Linear Fractional Maps in ${\mathbb C}$

A linear fractional map is defined as

$$\phi(z) = \frac{az+b}{cz+d}$$

where a, b, c, and d are complex numbers and $ad - bc \neq 0$.



The Cross Ratio as a LFM

Theorem

Cross ratios are invariant under LFMs. For a LFM ϕ such that $\phi(z_i)=w_i$, for distinct z_i 's and w_i 's, we have

$$\frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = \frac{(w_1 - w_3)(w_2 - w_4)}{(w_1 - w_4)(w_2 - w_3)}$$

The Cross Ratio as a LFM

Theorem

Cross ratios are invariant under LFMs. For a LFM ϕ such that $\phi(z_i) = w_i$, for distinct z_i 's and w_i 's, we have

$$\frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_4)(z_2 - z_3)} = \frac{(w_1 - w_3)(w_2 - w_4)}{(w_1 - w_4)(w_2 - w_3)}$$

There is a unique LFM that can interpolate two sets of three distinct points!

The Deep Linear Algebra Link

Definition

Given a linear fractional map $\phi(z)=\frac{az+b}{cz+d}$ we define the associated matrix by

The Deep Linear Algebra Link

Definition

Given a linear fractional map $\phi(z)=\frac{az+b}{cz+d}$ we define the associated matrix by

$$m_{\phi} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Projective Coordinates

Given $v=(v_1,v_2)\in\mathbb{C}^2$ where $v_1\in\mathbb{C}$ and $v_2\in\mathbb{C}$ with $v\neq(0,0)$, we identify $v\sim\frac{v_1}{v_2}\in\overline{\mathbb{C}}.$

What's Really Going On

A linear transformation in \mathbb{C}^2 can be represented by a complex 2×2 matrix as

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} az_1 + bz_2 \\ cz_1 + dz_2 \end{pmatrix}.$$

What's Really Going On

A linear transformation in \mathbb{C}^2 can be represented by a complex 2×2 matrix as

$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} az_1 + bz_2 \\ cz_1 + dz_2 \end{pmatrix}.$$

Let
$$z \sim \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$
 and $w \sim \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$. Then we have

$$w = \frac{w_1}{w_2} = \frac{az_1 + bz_2}{cz_1 + dz_2} = \frac{a\left(\frac{z_1}{z_2}\right) + b}{c\left(\frac{z_1}{z_2}\right) + d} = \frac{az + b}{cz + d}.$$

The Cross Ratio in Projective Coordinates

Definition

If $z=(z_1,z_2)$ and $w=(w_1,w_2)$ are points in ${\bf CP}^1$, then we define

$$[z, w] = \det \begin{pmatrix} z_1 & w_1 \\ z_2 & w_2 \end{pmatrix}.$$

The Cross Ratio in Projective Coordinates

Definition

If $z=(z_1,z_2)$ and $w=(w_1,w_2)$ are points in ${\bf CP}^1$, then we define

$$[z, w] = \det \begin{pmatrix} z_1 & w_1 \\ z_2 & w_2 \end{pmatrix}.$$

Definition

Let w_1 , w_2 , w_3 , and w_4 be four distinct points in \mathbb{CP}^1 , then we define the cross ratio to be

$$(w_1, w_2, w_3, w_4) = \frac{[w_1, w_3][w_2, w_4]}{[w_1, w_4][w_2, w_3]}$$

The Cross Ratio in Projective Coordinates

Definition

If $z=(z_1,z_2)$ and $w=(w_1,w_2)$ are points in ${\bf CP}^1$, then we define

$$[z, w] = \det \begin{pmatrix} z_1 & w_1 \\ z_2 & w_2 \end{pmatrix}.$$

Definition

Let w_1 , w_2 , w_3 , and w_4 be four distinct points in \mathbb{CP}^1 , then we define the cross ratio to be

$$(w_1, w_2, w_3, w_4) = \frac{[w_1, w_3][w_2, w_4]}{[w_1, w_4][w_2, w_3]} = (z_1, z_2, z_3, z_4).$$

Really!

Linear Fractional Maps in \mathbb{C}^N .

Definition

A map ϕ is called a linear fractional map if

$$\phi(z) = \frac{Az + B}{\langle z, C \rangle + D}$$

where A is an $N\times N$ matrix, B and C are column vectors in \mathbb{C}^N , and $D\in\mathbb{C}.$

Linear Fractional Maps in \mathbb{C}^N .

Definition

A map ϕ is called a linear fractional map if

$$\phi(z) = \frac{Az + B}{\langle z, C \rangle + D}$$

where A is an $N\times N$ matrix, B and C are column vectors in \mathbb{C}^N , and $D\in\mathbb{C}$.

What might m_{ϕ} look like now?

Example

Let ϕ be the linear fractional map in two complex variables given by

$$\phi(z) = \phi(z_1, z_2) = \left(\frac{z_1 + 1}{-z_1 + 3}, \frac{2z_2}{-z_1 + 3}\right).$$

Example

Let ϕ be the linear fractional map in two complex variables given by

$$\phi(z) = \phi(z_1, z_2) = \left(\frac{z_1 + 1}{-z_1 + 3}, \frac{2z_2}{-z_1 + 3}\right).$$

Identifying $\langle z, C \rangle$ with C^*z , we can write this as

$$\left(\frac{z_1+1}{-z_1+3}, \frac{2z_2}{-z_1+3}\right) = \frac{\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}}{(-1,0)^T (z_1, z_2) + 3}.$$

with
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, $B = (1,0)^T$, $C = (-1,0)^T$, and $D = 3$.

Generalizing the Cross Ratio to Two Variables

Definition (Π)

Given five distinct points w_i for i=1,...,5 in ${\bf CP}^2$, we define the cross ratio as

$$(w_1,w_2,w_3,w_4,w_5) = \frac{[w_1,w_3,w_5][w_2,w_4,w_5]}{[w_1,w_4,w_5][w_2,w_3,w_5]} = \frac{[z_1,z_3,z_5][z_2,z_4,z_5]}{[z_1,z_4,z_5][z_2,z_3,z_5]}.$$

Generalizing to Two Variables

Definition (Π)

We define the cross ratio pair in ${f CP}^2$ as

$$(z_1,z_2,z_3,z_4,z_5)_2 = \left(\frac{[z_1,z_3,z_5][z_2,z_4,z_5]}{[z_1,z_4,z_5][z_2,z_3,z_5]}, \frac{[z_1,z_3,z_4][z_2,z_4,z_5]}{[z_1,z_4,z_5][z_2,z_3,z_4]}\right)$$

where we see that this defines a linear fractional map when the point associated with z_1 is a variable in \mathbb{C}^2 .